Breathing with Upper Chest: Causes and Effects

Spanish flag with link to page about: Breathing with Upper Chest: Causes and Effects

- Updated on September 13, 2020

Proofread by Samson Hui Proofreader on July **, 2019

Grammarly-Daan-Sept-2019

Breathing with Upper Chest: Causes and Effects 1By Dr. Artour Rakhimov, Alternative Health Educator and Author


- Medically Reviewed by Naziliya Rakhimova, MD

Breathing with Upper Chest: Causes and Effects

Man with upper chest breathing Chest breathing (or thoracic breathing) is very common in modern people. More than 50% of adults have predominantly chest breathing at rest (see the test below). It is easy to observe this phenomenon. Medical textbooks, various Eastern therapies and techniques (such as yoga, Buddhism, tai-chi, etc.) all teach that normal or healthy breathing at rest is mainly diaphragmatic. At the beginning of the 20th century, automatic breathing was commonly done with the diaphragm. What are the causes of this shift to chest breathing in modern people?

Chest breathing appears when body oxygen and CO2 levels become too low. As shown in the table below, chest breathing is even more common for people with chronic diseases, who breathe too deeply at rest.

Breathing rates in healthy, normal people vs diseases

More than 90% of sick people have upper chest breathing with increased minute ventilation, respiratory rates, and minute volume (i.e., automatic deep breathing at rest or taking too much air per one breath). Thoracic breathing causes three fundamental health effects that promote chronic diseases and lead to low body-oxygen levels.

In this video, Dr. Artour Rakhimov explains the chest breathing test (how to check one’s automatic breathing at rest) and the effects of chest breathing on health.

Upper chest breathing reduces blood oxygenation

The textbook, Respiratory Physiology (West, 2000), suggests that the lower 10% of the lungs transport more than 40 ml of oxygen per minute, while the upper 10% of the lungs transport less than 6 ml of oxygen per minute. Hence, the lower parts of the lungs are about 6-7 times more effective in oxygen transport than the top of the lungs due to richer blood supply mostly caused by gravity.

During thoracic breathing, lower layers of the lungs, which are most valuable in oxygen transport, get much less, if any, fresh air (less oxygen supply). This causes reduced oxygenation of arterial blood in the lungs and can lead to the so-called “ventilation-perfusion” mismatch (as in COPD or emphysema). Normal breathing is diaphragmatic, allowing homogeneous inflation of both lungs with fresh air, similar to what happens in the cylinder of a car engine due to the movement of the piston. Hence, during diaphragmatic breathing, all alveoli are homogeneously stretched vertically and get fresh air supply with higher O2 concentration for superior arterial blood oxygenation. In contrast, chest breathing creates problems with blood oxygenation. This leads to reduced cell oxygenation: the driving force of all chronic diseases.

Thoracic breathing causes lymphatic stagnation

Dr. Shields, in his study, “Lymph, lymph glands, and homeostasis” (Shields, 1992) reported that diaphragmatic breathing stimulates the cleansing work of the lymph system by creating a negative pressure pulling the lymph through the lymph system. This increases the rate of elimination of toxins from visceral organs by about 15 times. Why is this so?

The respiratory system The lymph system, unlike the cardiovascular system with the heart, has no pump. Lymph nodes are located in parts of the human body that get naturally compressed (squeezing) due to movements of body parts. For example, lymph nodes are located around the neck, above the armpits and groin area. Hence, when we move, stretch or turn the head, arms and legs, these lymph nodes get mechanical stimulation to push the lymph through valves. This is how the lymphatic system works. However, the lymph nodes connected to the stomach, kidneys, liver, pancreas, spleen, large and small colons, and other vital organs are located just under the diaphragm – over 60% of all lymph nodes in total!

Hence, nature expects us to use the diaphragm in order to remove waste products from these vital organs all the time – literally with each breath, 24/7. Hence, another problem with thoracic breathing is a stagnation in the lymph system and the accumulation of waste products in vital organs located under the diaphragm. (This effect is also mentioned in other sources, for example, http://www.amsa.org/healingthehealer/breathing.cfm.)Effects of deep chest or thoracic breathing on brain oxygen levels

Thoracic breathing means low blood oxygen

People who are chest breathers always have deep breathing (large breaths) at rest or sleep and suffer from hyperventilation (breathing more than the norm). When we breathe more air, we get less oxygen in body cells. In fact, the slower your automatic breathing pattern at rest (down to only 3 breaths/min), the larger the amount of oxygen is delivered to your cells.

While healthy normal breathing is abdominal or diaphragmatic, it is very small in amount (only 500 ml of air per one breath at rest) so that healthy people usually do not feel their breath.Check your breath test: chest thoracic vs. diaphragmatic

Find your type of breathing at rest

When you breathe during rest, do you breathe through your diaphragm or your upper chest? Find this out by doing the test below.

Easy test. Put one hand on your abdomen (or stomach) and another hand on a higher position—on your upper chest (see the picture on the right). Relax completely so that your breathing dynamic has little changes. Pay attention to your breathing for about 20-30 seconds with both hands in place. (You want to know more about your usual unconscious breathing and find out if you have chest or abdominal breathing.) Take 2-3 very slow and deep breaths to feel your breathing dynamics in more detail.

Now you know more about your usual breathing pattern. In order to be certain, you can ask other people to observe how you breathe when you are not aware of your breathing (e.g., during sleep, while reading, studying, etc.).

Learn how to stop upper thoracic breathing

There is a special page that provides instructions on how to develop diaphragmatic breathing 24/7 with 3 breathing exercises, instructions, techniques, and long-term solutions to problems with thoracic breathing. The link to this page is provided right below here (in the next paragraph), as your bonus content.

Click here: How to learn and develop diaphragmatic breathing.

[/sociallocker]

This video clip (Chest Breathing in Modern People) explains why modern people are chest breathers:

Clinical References

Castro M. Control of breathing. In: Physiology, Berne RM, Levy MN (editors), 4th edition, Mosby, St. Louis, 1998.

Ganong WF, Review of medical physiology, 15th ed., 1995, Prentice Hall Int., London.

Shields JW, MD, Lymph, lymph glands, and homeostasis, Lymphology, Dec. 1992, 25, 4: 147.

West JB. Respiratory physiology: the essentials. 6th ed. Philadelphia: Lippincott, Williams and Wilkins; 2000.

Back to the Homepage