Chest Breathing | Thoracic Breathing: Effects, Tests and Solutions

Man with chest breathing Chest breathing (or thoracic breathing) is very common in modern people. More than 50% of adults have predominantly chest breathing at rest. It is even more common for people with chronic diseases, who breathe too deeply at rest, as this table shows. 

Minute ventilation rates (chronic diseases)

Condition Minute
ventilation
Number of
people
All references or
click below for abstracts
Normal breathing 6 L/min - Medical textbooks
Healthy Subjects 6-7 L/min >400 Results of 14 studies
Heart disease 15 (~+mn~4) L/min 22 Dimopoulou et al, 2001
Heart disease 16 (~+mn~2) L/min 11 Johnson et al, 2000
Heart disease 12 (~+mn~3) L/min 132 Fanfulla et al, 1998
Heart disease 15 (~+mn~4) L/min 55 Clark et al, 1997
Heart disease 13 (~+mn~4) L/min 15 Banning et al, 1995
Heart disease 15 (~+mn~4) L/min 88 Clark et al, 1995
Heart disease  14 (~+mn~2) L/min 30 Buller et al, 1990
Heart disease 16 (~+mn~6) L/min 20 Elborn et al, 1990
Pulm hypertension 12 (~+mn~2) L/min 11 D'Alonzo et al, 1987
Cancer 12 (~+mn~2) L/min 40 Travers et al, 2008
Diabetes 12-17 L/min 26 Bottini et al, 2003
Diabetes 15 (~+mn~2) L/min 45 Tantucci et al, 2001
Diabetes 12 (~+mn~2) L/min 8 Mancini et al, 1999
Diabetes 10-20 L/min 28 Tantucci et al, 1997
Diabetes 13 (~+mn~2) L/min 20 Tantucci et al, 1996
Asthma 13 (~+mn~2) L/min 16 Chalupa et al, 2004
Asthma 15 L/min 8 Johnson et al, 1995
Asthma 14 (~+mn~6) L/min 39 Bowler et al, 1998
Asthma 13 (~+mn~4) L/min 17 Kassabian et al, 1982
Asthma 12 L/min 101 McFadden, Lyons, 1968
COPD 14 (~+mn~2) L/min 12 Palange et al, 2001
COPD 12 (~+mn~2) L/min 10 Sinderby et al, 2001
COPD 14 L/min 3 Stulbarg et al, 2001
Sleep apnea 15 (~+mn~3) L/min 20 Radwan et al, 2001
Liver cirrhosis 11-18 L/min 24 Epstein et al, 1998
Hyperthyroidism 15 (~+mn~1) L/min 42 Kahaly, 1998
Cystic fibrosis 15 L/min 15 Fauroux et al, 2006
Cystic fibrosis 10 L/min 11 Browning et al, 1990
Cystic fibrosis* 10 L/min 10 Ward et al, 1999
CF and diabetes* 10 L/min 7 Ward et al, 1999
Cystic fibrosis 16 L/min 7 Dodd et al, 2006
Cystic fibrosis 18 L/min 9 McKone et al, 2005
Cystic fibrosis* 13 (~+mn~2) L/min 10 Bell et al, 1996
Cystic fibrosis 11-14 L/min 6 Tepper et al, 1983
Epilepsy 13 L/min 12 Esquivel et al, 1991
CHV 13 (~+mn~2) L/min 134 Han et al, 1997
Panic disorder 12 (~+mn~5) L/min 12 Pain et al, 1991
Bipolar disorder 11 (~+mn~2) L/min 16 MacKinnon et al, 2007
Dystrophia myotonica 16 (~+mn~4) L/min 12 Clague et al, 1994

Note that advanced stages of asthma can lead to lung destruction, ventilation-perfusion mismatch,
and arterial hypercapnia causing further reduction in body oxygen levels.

More than 90% of sick people have upper chest breathing with increased minute ventilation, respiratory rates, and minute volume (i.e., automatic deep breathing at rest or taking too much air per one breath). Thoracic breathing causes three fundamental health effects that promote chronic diseases and lead to low body-oxygen levels.

Chest breathing reduces blood oxygenation

The textbook, Respiratory Physiology (West, 2000), suggests that the lower 10% of the lungs transports more than 40 ml of oxygen per minute, while the upper 10% of the lungs transports less than 6 ml of oxygen per minute. Hence, the lower parts of the lungs are about 6-7 times more effective in oxygen transport than the top of the lungs due to richer blood supply mostly caused by gravity.

During thoracic breathing, lower layers of the lungs, which are most valuable in oxygen transport, get much less, if any, fresh air (less oxygen supply). This causes reduced oxygenation of arterial blood in the lungs and can lead to so called "ventilation-perfusion" mismatch (as in COPD or emphysema). Normal breathing is diaphragmatic, allowing homogeneous inflation of both lungs with fresh Medical people and patientsair, similar to what happens in the cylinder of a car engine due to the movement of the piston. Hence, during diaphragmatic breathing, all alveoli are homogeneously stretched vertically and get fresh air supply with higher O2 concentration for superior arterial blood oxygenation. In contrast, chest breathing creates problems with blood oxygenation. This leads to reduced cell oxygenation: the driving force of all chronic diseases.

Thoracic breathing causes lymphatic stagnation

Dr. Shields, in his study, "Lymph, lymph glands, and homeostasis" (Shields, 1992) reported that diaphragmatic breathing stimulates the cleansing work of the lymph system by creating a negative pressure pulling the lymph through the lymph system. This increases the rate of elimination of toxins from visceral organs by about 15 times. Why is this so?

The respiratory systemThe lymph system, unlike the cardiovascular system with the heart, has no pump. Lymph nodes are located in parts of the human body that get naturally compressed (squeezing) due to movements of body parts. For example, lymph nodes are located around the neck, above arm pits and groin area. Hence, when we move, stretch or turn the head, arms and legs, these lymph nodes get mechanical stimulation to push the lymph through valves. This is how the lymphatic system works. However, the lymph nodes connected to the stomach, kidneys, liver, pancreas, spleen, large and small colons, and other vital organs are located just under the diaphragm - over 60% of all lymph nodes in total!

Hence, nature expects us to use the diaphragm in order to remove waste products from these vital organs all the time - literally with each breath, 24/7. Hence, another problem with thoracic breathing is stagnation in the lymph system and accumulation of waste products in vital organs located under the diaphragm. (This effect is also mentioned in other sources, for example, http://www.amsa.org/healingthehealer/breathing.cfm.)Effects of deep breathing on brain oxygen levels

Thoracic breathing means low blood oxygen

People who are chest breathers virtually always have deep breathing (large breaths) at rest or sleep and suffer from hyperventilation (breathing more than the norm). When we breathe more air, we get less oxygen in body cells. In fact, the slower your automatic breathing pattern at rest (down to only 3 breaths/min), the larger the amount of oxygen delivered to cells.

Keep in mind that, while healthy normal breathing is abdominal or diaphragmatic. It is very small in amount (only 500 ml of air per one breath at rest) so that healthy people usually do not feel their breath.Check your breath: chest

Find your type of breathing at rest

Do you breathe using the diaphragm or chest at rest? Check yourself.

Easy test. Put one hand on your abdomen (or stomach) and another one higher, on your upper chest (see the picture on the right). Relax completely so that your breathing dynamic has little changes. Pay attention to your breathing for about 20-30 seconds with both hands in place. (You want to know more about your usual unconscious breathing and find out if you have chest or abdominal breathing.) Take 2-3 very slow and deep breaths to feel your breathing dynamics in more detail.

Now you know more about your usual breathing pattern. In order to be certain, you can ask other people to observe how you breathe when you are not aware of your breathing (e.g., during sleep, while reading, studying, etc.).

Learn how to stop chest breathing

Module 8 (Learning Section). How to Learn and Develop Diaphragmatic Breathing 24/7 with 3 breathing exercises, instructions, techniques, and long term solutions to thoracic breathing problems.

This video clip (Chest Breathing in Modern People) explains why modern people are chest breathers:

References

Castro M. Control of breathing. In: Physiology, Berne RM, Levy MN (editors), 4-th edition, Mosby, St. Louis, 1998.

Ganong WF, Review of medical physiology, 15-th ed., 1995, Prentice Hall Int., London.

Shields JW, MD, Lymph, lymph glands, and homeostasis, Lymphology, Dec. 1992, 25, 4: 147.

West JB. Respiratory physiology: the essentials. 6th ed. Philadelphia: Lippincott, Williams and Wilkins; 2000.

You can leave your feedback and comments below. Thanks.


HTML Comment Box is loading comments...
Back to the Homepage
507