Breathing Less Header
Home CO2 effects Causes Diseases Symptoms Techniques Learn here Books ... My classes Fitness Other pages
RSS feed

References: Epstein et al, 1998

Epstein SK, Zilberberg MD; Facoby C, Ciubotaru RL, Kaplan LM

Response to symptom-limited exercise in patients with the hepatopulmonary syndrome

Chest 1998; 114; p. 736-741.

Department of Medicine, Tupper Research Institute, New England Medical Center, Tufts University School of Medicine, Boston, MA 02166, USA

OBJECTIVE: To study the response to symptom-limited exercise in patients with the hepatopulmonary syndrome (HPS). DESIGN: The response to maximal cardiopulmonary exercise (CPX) was studied in 5 patients with HPS and compared with 10 case control (normoxemic, NC) cirrhotics (matched for age, gender, etiology and severity of liver disease, tobacco use, and beta-blocker therapy) and 9 hypoxemic control cirrhotics (HC) without clinical evidence of HPS. SETTING: Cardiopulmonary exercise physiology laboratory in a tertiary care referral center. PATIENTS: Cirrhotics referred for CPX as part of their preliver transplantation evaluation. MEASUREMENTS: Standard pulmonary function tests and echocardiography were performed to assess resting pulmonary and cardiac function. Peak oxygen consumption (VO2), minute ventilation, arterial blood gases, and dead space (VD/VT) were determined during symptom-limited maximal CPX. RESULTS: Resting spirometry and lung volumes were similar between HPS and NC subjects, while HC subjects had restrictive physiology. Differences existed in diffusing capacity corrected for hemoglobin and alveolar volume percent predicted (HPS, 45+/-2 vs NC, 68+/-3, p<0.05; vs HC, 70+/-4, p<0.05), PaO2 (HPS, 70+/-5 mm Hg; HC, 79+/-3 mm Hg, vs NC, 102+/-3 mm Hg, p<0.05) and alveolar-arterial (A-a) O2 gradient (HPS, 42+/-8 mm Hg vs HC, 27+/-2 mm Hg, p<0.05; vs NC, 6+/-2 mm Hg, p<0.05). During CPX, HPS patients achieved a lower peak VO2 percent predicted (HPS, 55+/-6 vs NC, 73+/-3, p<0.05; vs HC, 71+/-5, p<0.05) and VO2 at the ventilatory threshold as percent predicted peak VO2 (HPS, 36+/-2 vs NC, 55+/-4, p<0.05; vs HC 55+/-5, p<0.05). While no differences existed in heart rate and breathing reserve, HPS patients had significantly lower PaO2 (HPS, 50+/-5 mm Hg vs NC, 97+/-4 mm Hg, p<0.05; vs HC, 87+/-6 mm Hg, p<0.05), wider A-a O2 gradient (HPS, 73+/-5 mm Hg vs NC, 13+/-3 mm Hg, p<0.05; vs HC, 31+/-5 mm Hg, p<0.05) and higher VD/VT (HPS, 0.36+/-.03 vs NC, 0.18+/-.02, p<0.05; vs HC, 0.28+/-.02, p<0.05) at peak exercise. For HPS patients, VO2 was negatively correlated with VD/VT (r2=0.9) and positively correlated with PaO2 (r2=0.41) at peak exercise. Conclusions: Patients with HPS demonstrate a severe reduction in aerobic capacity, beyond that found in cirrhotics without syndrome. The significant hypoxemia and elevated VD/VT at peak exercise suggest that an abnormal pulmonary circulation contributes to further exercise limitation in patients with HPS.

Back to the homepage